786. Molecular Polarisability: Molar Kerr Constants and Dipole Moments of Vinyl Bromide and Six Polyvinyl Bromides as Solutes in Dioxan.

By R. J. W. Le Fèvre and K. M. S. Sundaram.

Apparent dipole moments and molar Kerr constants are reported for vinyl bromide and six polyvinyl bromides (molecular weights between 10,000 and 38,000) as solutes in dioxan. Values for the monomer are $1 \cdot 3_{8} \mathrm{D}$ and 58.4×10^{-12}; for the polymers μ 's and $\infty\left({ }_{m} K_{2}\right)$'s range from $14 \cdot 1$ to 33.5 D . and 228×10^{-12} to 3489×10^{-12}, respectively. As solutes, these macromolecules display small anisotropies of polarisability consistent with conformations as near-random coils or as helices. No notable differences between polyvinyl chlorides or bromides are found. Empirical relations are given for the polyvinyl bromide series whereby certain easily observable physical quantities may be connected with degrees of polymerisation.

The work here reported parallels that recently ${ }^{1}$ described on vinyl chloride and a number of polyvinyl chlorides. Its purpose was to find whether the greater effective radius of bromine than of chlorine ${ }^{2}$ affects the relative flexibilities of polyvinyl bromides and chlorides in ways detectable by polarity and polarisability measurements.

Experimental

Vinyl Bromide.-This was prepared ${ }^{3}$ by dropping 1,2 -dibromoethane into an excess of a warm 20% solution of potassium hydroxide in 95% ethanol. The vapours were led consecutively through water, potassium hydroxide pellets, and anhydrous calcium chloride, then collected in a trap cooled in solid carbon dioxide-acetone. The liquid monomer was kept in the dark over anhydrous magnesium sulphate in sealed tubes at about 0°. Shortly before use it was distilled directly from the drying agent (b. p. $15 \cdot 8^{\circ}$).

[^0]Table 1.
Dielectric constants, birefringences, etc., observed for solutions of vinyl bromide and six polymers.

Vinyl bromide in dioxan						
$10^{5} w_{2} \ldots \ldots .$.	1158	2648	4203	5811	8003	9391
$10^{4} \Delta n \ldots \ldots .$.	1	3	5	7	9	11
$\varepsilon_{12} \ldots \ldots$.	2.2338	2.2654	$2 \cdot 3038$	2.3425	2.3770	$2 \cdot 4057$
$d_{12} \ldots \ldots \ldots \ldots$	1.03187	1.03674	1.04223	1.04788	1.05526	1.05929
$10^{7} \Delta B$	0.037_{0}	0.087_{1}	$0 \cdot 136{ }_{8}$	$0 \cdot 187{ }_{2}$	$0 \cdot 258{ }_{2}$	$0 \cdot 2989$
	whence $\sum \Delta n / \sum w_{2}=0.011_{5} ; \sum \Delta \varepsilon / \sum w_{2}=2 \cdot 160 ;$$\Sigma \Delta d / \sum w_{2}=0.3373 ; \sum \Delta B / \Sigma w_{2}=3 \cdot 22_{0} \times 10^{-7}$					
Polyvinyl bromide I in dioxan						
$10^{5} w_{2} \ldots \ldots .$.	1771	1929	2341	2693	2944	3205
$10^{4} \Delta n \ldots \ldots \ldots$	15	18	20	22	24	27
$10^{4} \Delta n^{2} \ldots \ldots$.	42	51	57	62	68	77
$\varepsilon_{12} \ldots \ldots \ldots \ldots$	2.2527	$2 \cdot 2579$	2.2649	$2 \cdot 2811$	2.2846	2.2878
$d_{12} \ldots \ldots \ldots \ldots$	1.03708	1.03777	1.03993	1.04150	1.04324	1.04444
$\begin{gathered} \text { whence } \sum \Delta n / \sum w_{2}=0.084_{6} ; \sum \Delta n^{2} / \sum w_{2}=0.239_{9} ; \\ \sum \Delta \varepsilon / \sum w_{2}=2.519 ; \sum \Delta d / \sum w_{2}=0.5104 \end{gathered}$						
$10^{5} w_{2} \ldots \ldots \ldots$.	2693	2944	3205	3861	4123	4462
$10^{7} \Delta B \quad \ldots \ldots$	$0 \cdot 004_{4}$	$0 \cdot 005_{5}$	$0 \cdot 006{ }_{0}$	$0 \cdot 0067$	$0 \cdot 007_{4}$	0.0079
whence $\Sigma \Delta B / \Sigma w_{2}=0 \cdot 175_{8} \times 10^{-7}$						
Polyvinyl bromide I in cyclohexanone						
$10^{4} c$	7611	10,801	14,002	16,400	18,821	
$d_{12} \ldots \ldots \ldots \ldots$	0.94753	0.94891	$0 \cdot 94999$	0.95091	0.95187	
$10^{4} \eta_{\text {sp }} \ldots \ldots \ldots$.	415	591	772	910	1046	
whence $\left[\eta_{\mathrm{sp}} / c\right]_{c \rightarrow 0}=0.0540$						
Polyvinyl bromide II in dioxan						
$10^{5} w_{2} \ldots \ldots \ldots$.	1244	1489	1751	1984	2344	2684
$10^{4} \Delta n \ldots \ldots .$.	11	12	15	17	20	22
$10^{4} \Delta n^{2}$	32	34	43	49	57	63
ε_{12}	$2 \cdot 2434$	$2 \cdot 2490$	$2 \cdot 2564$	2.2612	2.2708	$2 \cdot 2797$
$d_{12} \ldots \ldots \ldots \ldots$.	1.03434	1.03564	1.03691	1.03838	1.04011	1.04178
whence $\sum \Delta n / \Sigma w_{2}=0.084_{4} ; \sum \Delta n^{2} / \Sigma w_{2}=0.241_{8}$; $\sum \Delta \varepsilon / \sum w_{2}=2.667 ; \quad \sum \Delta d / \sum w_{2}=0.5146$						
$10^{5} w_{2} \ldots \ldots \ldots$.	1366	1741	2091	2322	2641	2902
$10 \Delta B \quad \cdots \cdots \cdot{ }^{\text {w }}$ whence $\sum \Delta B / \sum w_{2}=0.245_{0} \times 10^{-7}$						
Polyvinyl bromide $I I$ in cyclohexanone						
$10^{4} c$	6212	9703	13,192	15,824	18,233	
$d_{12} \ldots \ldots \ldots \ldots$	0.94660	0.94688	0.94756	0.94982	0.95078	
$10^{4} \eta_{s p} \ldots \ldots \ldots$.	383	601	821	988	1143	
whence $\left[\eta_{\text {sp }} / c\right]_{c \rightarrow 0}=0.0617$						
Polyvinyl bromide III in dioxan						
$10^{5} w_{2} \ldots \ldots .$.	1346	1624	1928	2212	2416	2815
$10^{4} \Delta n \ldots \ldots .$.	11	14	16	18	20	23
$10^{4} \Delta n^{2} \ldots \ldots$.	31	40	46	51	55	66
	$2 \cdot 2496$	2.2571	$2 \cdot 2644$	$2 \cdot 2785$	$2 \cdot 2831$	$2 \cdot 2905$
d_{12}	1.03477	1.03632	1.03783	1.03927	1.04040	1.04246
$10^{7} \Delta B$	$0 \cdot 005_{4}$	$0 \cdot 0067$	$0 \cdot 0079$	$0 \cdot 0090$	$0 \cdot 0097$	$0.011{ }_{6}$
	$\begin{gathered} \text { whence } \Sigma \Delta n / \sum w_{2}=0.082_{6} ; \sum \Delta n^{2} / \sum w_{2}=0.234_{2} ; \\ \Sigma \Delta \varepsilon / \Sigma w_{2}=2.992 ; \Sigma \Delta d / \Sigma w_{2}=0.5110 ; \sum \Delta B / \Sigma w_{2}=0.407_{8} \times 10^{-7} \end{gathered}$					
Polyvinyl bromide III in cyclohexanone						
$10^{4} \mathrm{c}$. $\ldots \ldots .$.	6989	11,043	13,004	16,400	18,410	
$d_{12} \ldots \ldots \ldots \ldots$	$0 \cdot 94664$	0.94727	0.94987	0.95126	0.95321	
$10^{4} n_{\text {sp }} \ldots \ldots \ldots$.	537	857	1012	1280	1443	
whence $\left[\eta_{\text {sp }} / c\right]_{e \rightarrow 0}=0.0761$						

Table 1. (Continued.)
Polyvinyl bromide IV in dioxan

$10^{5} w_{2} \ldots \ldots .$.	1548	2133	2683	3449	3921	4275	
$10^{4} \Delta n \ldots \ldots \ldots$.	13	18	22	30	32	33	
$10^{4} \Delta n^{2}$	37	51	63	86	91	94	
ε_{12}	2.2553	$2 \cdot 2744$	$2 \cdot 2888$	$2 \cdot 3215$	$2 \cdot 3340$	$2 \cdot 3462$	
$d_{12} \ldots \ldots \ldots \ldots$	1.03631	1.03881	1.04307	1.04593	1.04855	1.05144	
whence $\sum \Delta n / \sum w_{2}=0.082_{2} ; \sum \Delta n^{2} / \sum w_{2}=0.234_{3}$; $\Sigma \Delta \varepsilon / \sum w_{2}=3.144 ; \sum \Delta d / \sum w_{2}=0.5337$							
$10^{5} w_{2} \ldots \ldots$.	1952	2382	2788	3245	3803	4314	4892
$10^{7} \Delta B \ldots$	$0 \cdot 008{ }_{6}$	$0 \cdot 010_{1}$	0.012_{8}	0.014_{3}	$0 \cdot 0167$	$0 \cdot 0195$	0.0218

whence $\Sigma \Delta B / \sum w_{2}=0.444_{1} \times 10^{-7}$
Polyvinyl bromide IV in cyclohexanone

$10^{4} \mathrm{C}$	8005	11,541	14,512	19,473	25,308		
$d_{12} \ldots \ldots$.	0.94964	0.95168	$0 \cdot 95318$	0.95554	$0 \cdot 95831$		
$10^{4} \eta_{s p} \ldots \ldots \ldots$.	673	978	1237	1688	2209		
whence $\left[\eta_{\text {sp }} / c\right]_{e \rightarrow 0}=0.0825$							
Polyvinyl bromide V in dioxan							
$10^{5} w_{2} \ldots \ldots \ldots$.	1467	1782	1926	2234	2532	3064	3344
$10^{4} \Delta n \ldots \ldots .$.	12	14	15	18	21	25	28
$10^{4} \Delta n^{2} \ldots \ldots$.	34	39	42	51	59	71	79
$\varepsilon_{12} \ldots \ldots \ldots \ldots$	2.2598	2.2716	2.2761	$2 \cdot 2854$	$2 \cdot 2970$	$2 \cdot 3165$	$2 \cdot 3220$
$d_{12} \ldots \ldots \ldots \ldots$	1.03582	1.03769	1.03807	$1 \cdot 04006$	1.04185	$1 \cdot 04414$	$1 \cdot 04644$

whence $\sum \Delta n / \sum w_{2}=0.081_{3} ; \sum \Delta n^{2} / \sum w_{2}=0.229_{4}$;
$\Sigma \Delta \varepsilon / \Sigma w_{2}=3.458 ; \quad \Sigma \Delta d / \Sigma w_{2}=0.5387$

$10^{5} w_{2} \ldots \ldots .$.	1728	1994	2334	2648	2905	3304	
$10^{7} \Delta B$	$\ldots .$.	0.009_{2}	0.010_{9}	0.012_{5}	0.014_{0}	0.015_{5}	0.017_{2}

whence $\Sigma \Delta B / \Sigma w_{2}=0.531_{7} \times 10^{-7}$
Polyvinyl bromide V in cyclohexanone

$10^{4} c$	$\ldots \ldots$.	6200	9001	12,806	15,399	17,741
$d_{12} \ldots \ldots \ldots$.	0.94786	0.95147	0.95392	0.95527	0.95674	
$10^{4} \eta_{\mathrm{sp}} \ldots \ldots$.	591	865	1250	1516	1762	
			whence $\left[\eta_{\mathrm{sp}} / c\right]_{c \rightarrow 0}=0.0927$			

Polyvinyl bromide VI in dioxan

$10^{5} w_{2}$	2033	2645	3126	3508	3751	4104	4672
$10^{4} \Delta n$	16	20	23	27	29	31	36
$10^{4} \Delta n^{2}$	45	57	65	77	82	88	102
ε_{12}	2.2856	$2 \cdot 3109$	$2 \cdot 3309$	$2 \cdot 3457$	$2 \cdot 3540$	$2 \cdot 3682$	$2 \cdot 4008$
d_{12}	1.03879	1.04167	1.04460	1.04675	1.04828	$1 \cdot 04984$	1.05281
whence $\sum \Delta n / \sum w_{2}=0.076_{3} ; \sum \Delta n^{2} / \sum w_{2}=0.216_{4}$; $\Sigma \Delta \varepsilon / \sum w_{2}=3.914 ; \quad \sum \Delta d / \sum w_{2}=0.5316$							
$10^{5} w_{2}$	987	1099	1186	1354	1725	1916	2105
$10^{7} \Delta B$	$0 \cdot 0063$	0.0069	0.0077	0.008_{7}	0.0109	0.0124	0.0137

whence $\Sigma \Delta B / \Sigma w_{2}=0.642_{1} \times 10^{-7}$
Polyvinyl bromide VI in cyclohexanone

$10^{4} c$	$\ldots \ldots \ldots$.	4003	6605	8001	10,211	12,011
$d_{12} \ldots \ldots \ldots$.	0.94911	0.95172	0.95432	0.95653	0.95701	
$10^{4} \eta_{\text {sp }} \ldots \ldots \ldots$	535	923	1177	1549	1909	
	whence $\left[\eta_{\text {sp }} / c\right]_{c \rightarrow 0}=0.1212$					

Polymerisation.-The pure monomer (64 ml .) was collected under nitrogen in an ampoule containing 0.10 g . of benzoyl peroxide. The ampoule was then sealed and irradiated at room temperature for 12 hr . by a $300-\mathrm{w}$ Hanovia-Slough mercury lamp, from a distance of 10 cm . The liquid monomer was transformed gradually into a cream-coloured powder, which was purified ${ }^{4}$ by extraction with warm dioxan and reprecipitation by an excess of methanol. The separated white polymer (32 g .) was washed several times with methanol and dried in vacuo.

4 Blauer, Shenblat, and Katchalsky, J. Polymer Sci., 1959, 38, 189.

Fractionation.-The total polymer was dissolved in dioxan (2 1.) at 25°. This $\mathbf{1 . 6 \%}$ solution was diluted by methanol until the appearance of cloudiness which, on stirring and cooling, became a precipitate removable by filtration. The procedure was recommenced on the filtrate,

4008
Molecular Polarisability.

Table 4.
Empirical connections between physical properties and logarithms of the degrees of polymerisation of polyvinyl bromide preparations.

$\alpha \varepsilon_{1}=1.22-0.910 L+0.758 L^{2}$						
$\alpha \varepsilon_{1}$ (obs.)	2.519	$2 \cdot 667$	2.992	3•144	3-458	3.914
$\alpha \varepsilon_{1}$ (calc.)	$2 \cdot 432$	$2 \cdot 675$	3.060	3.242	3.485	3.900
$\beta d_{1}=0.3850+0.063 L$						
βd_{1} (obs.)	0.5104	0.5146	0.5110	0.5337	0.5387	0.5316
βd_{1} (calc.)	0.5110	0.5177	0.5281	0.5321	0.5379	0.5453
$\gamma n_{1}=0.0900+0.0080 L-0.0051 L^{2}$						
γn_{1} (obs.)	0.085	0.084	0.083	0.082	0.081	0.076
γn_{1} (calc.)	0.086	$0 \cdot 084$	0.082	0.081	0.080	0.077
		$\delta B_{1}=$	$+0.843$			
δB_{1} (obs.)	$0 \cdot 176$	$0 \cdot 245$	0.408	$0 \cdot 444$	0.532	0.642
δB_{1} (calc.)	$0 \cdot 176$	$0 \cdot 265$	$0 \cdot 405$	$0 \cdot 459$	0.536	0.636
$\infty p_{2}=0.4200-0.221 L+0.141 L^{2}$						
∞p_{2} (obs.)	0.5557	0.5789	0.6335	0.6523	0.7027	0.7797
∞p_{2} (calc.) $\ldots \ldots \ldots . .$.	0.5440	0.5817	0.6456	$0 \cdot 6731$	0.7144	0.7706
$\infty r_{2}=0.2200-0.0253 L$						
$\infty \gamma_{2}$ (obs.) $\quad \ldots$.	$0 \cdot 1674$	$0 \cdot 1667$	0-1662	0.1608	$0 \cdot 1587$	$0 \cdot 1581$
$\infty \gamma_{2}$ (calc.)	$0 \cdot 1700$	$0 \cdot 1667$	$0 \cdot 1625$	0.1609	$0 \cdot 1586$	$0 \cdot 1556$
$\infty\left({ }_{8} K_{2}\right)=-24.00+13 \cdot 05 L$						
$10^{14} \infty\left({ }_{8} K_{2}\right)$ (obs.)	$2 \cdot 128$	$3 \cdot 224$	5.829	6.343	$7 \cdot 663$	9.309
$10^{14} \infty\left({ }_{8} K_{2}\right)$ (calc.)	$2 \cdot 110$	$3 \cdot 486$	5.644	6.478	$7 \cdot 680$	9-207
$\mu=1 \cdot 60-17 \cdot 48 L+11 \cdot 64 L^{2}$						
μ (obs.)	14-11	16.41	21.17	23.38	27.38	33.52
μ (calc.)	$13 \cdot 20$	16.54	21.90	$24 \cdot 44$	27.85	$32 \cdot 60$

Table 5.
Apparent semi-axes of polarisability of polyvinyl bromides.

Polymer	M_{2}	$\left(b_{1}-b_{2}\right)$	$b_{1}+2 b_{2}$	b_{1}	b_{2}
II	10,720	0.01	$202 \cdot 62$	$67 \cdot 55$	67.54
III	13,660	0.02	$257 \cdot 33$	$85 \cdot 79$	$85 \cdot 77$
III	19,990	0.02	$375 \cdot 28$	$125 \cdot 11$	$125 \cdot 09$
IV	23,160	0.02	$420 \cdot 68$	$140 \cdot 24$	$140 \cdot 22$
V	28,630	0.03	$513 \cdot 42$	$171 \cdot 16$	$171 \cdot 13$
VI	37,480	0.03	$669 \cdot 20$	$223 \cdot 09$	$223 \cdot 06$

for the two $\mathrm{C}-\mathrm{C}$, three $\mathrm{C}-\mathrm{H}$, and $\mathrm{C}-\mathrm{Br}$ bonds ${ }^{16}$ in the $-\mathrm{CH}_{2}-\mathrm{CHBr}$ repeating unit, when multiplied by x, gives ($b_{1}+2 b_{2}$), for polymers I-IV, respectively, as follow: 197.09, $251 \cdot 19,367 \cdot 63,425 \cdot 86,526 \cdot 57$, and $689 \cdot 24$).

A low anisotropy is thus revealed. These polymers therefore behave as would be expected if, in solution, they exist as almost random coils. Remarks in ref. 1 regarding the polyvinyl chlorides apply mutatis mutandis to the bromides; in particular, it is again the case that helical conformations can be proposed which are equivalent from polarity and polarisability viewpoints to near-random coils. By experiment these two types cannot be distinguished, nor can any notable differences in flexibility between the chlorides and bromides be convincingly detected.

The award of an H. B. and F. M. Gritton Research Scholarship to K. M. S. S. is gratefully acknowledged.

For the calculation a priori of the polarisability semi-axes of vinyl chloride Le Fèvre and Sundaram ${ }^{1}$ used $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{Cl}}$ and $b_{\mathrm{T}}^{\mathrm{C}-\mathrm{Cl}}=b_{\mathrm{T}}^{\mathrm{C}-\mathrm{Cl}}$ values* as drawn from carbon tetrachloride and chloroform. Unpublished measurements ${ }^{12}$ on bromoform give analogous longitudinal and transverse polarisabilities for $\mathrm{C}-\mathrm{Br}$ as $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{Br}}=0.56$ and $b_{\mathrm{T}}^{\mathrm{C}} \mathrm{Br}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{Br}}=$ 0.26 . Taking the $\mathrm{C}-\mathrm{C}-\mathrm{Br}$ angle in vinyl bromide as 122° (ref. 13 quotes $121.7^{\circ} \pm 1^{\circ}$ or $121^{\circ} \pm 3^{\circ}$), and the bond polarisabilities of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}=\mathrm{C}$ as in Le Fèvre and Sundaram, ${ }^{1}$ then leads to molecular semi-axes having the magnitudes and locations shown in Table 3.

Table 3.
Polarisability semi-axes calculated for vinyl bromide.

Direction cosines with *				
	X	Y	Z	
$b_{1}=0.918_{5}$	0.7986	-0.6018	0	$\mu_{1}=1.23_{1}$
$b_{2}=0.638_{4}$	0.6018	0.7986	0	$\mu_{2}=0.62_{3}$
$b_{3}=0.529$	0	0	1	$\mu_{3}=0$

* Axes X, Y, Z taken with X collinear with $\mathrm{C}=\mathrm{C}$ and Z perpendicular to molecular plane.

Thus b_{1} is at $\phi=21^{\circ}$ anti-clockwise to $\mathrm{C}-\mathrm{Br}$ in the $\mathrm{C}=\mathrm{C}-\mathrm{Br}$ plane, and when $\mu_{\text {resultant }}$ acts $\psi=5^{\circ} 52^{\prime}$ clockwise from $\mathrm{C}-\mathrm{Br}$ the calculated molar Kerr constant equals that found; these results resemble those for vinyl chloride ${ }^{1}$ (for which $\phi=c a .28^{\circ}$ and $\psi=5^{\circ} 22^{\prime}$) and the remarks of ref. 1 concerning mesomerism in the chloride apply also to the bromide.

Physical Properties and Molecular Weights of Polyvinyl Bromides.-As with the polyvinyl chlorides, empirical equations may be fitted fairly satisfactorily to most of the measured quantities. Table 4 summarises the relations between dielectric constant, density factors, etc., and $L=\log$ ($M_{\text {polymer }} / M_{\text {monomer }}$).

Apparent Dipole Moments of Polyvinyl Bromides.-As with the polyvinyl chlorides reported in ref. 1, the apparent polarities increase with molecular weight. If the moment μ_{0} of the repeating unit be taken as that ${ }^{14}$ of ethyl bromide ($1 \cdot 9_{3} \mathrm{D}$), x is the degree of polymerisation, and all inter-bond angles are assumed to be tetrahedral, then the DebyeBueche ${ }^{15}$ quotients rise from 0.5_{3} to 0.8_{6} :

Polymer	I	II	III	IV	V	VI
$\mu_{\text {apparent }}^{2} / x \mu_{0}{ }^{2} \ldots \ldots .$.	0.53	0.57	0.64	0.68	0.75	0.86

The quotient would ${ }^{15}$ be 0.92 were internal rotations " free " except for steric restrictions imposed by bond angles and lengths. The observed quotients therefore suggest that flexibility becomes greater with the size of the polymer, but this of course is to be expected from elementary principles. Comparison with our results ${ }^{1}$ for polyvinyl chlorides is handicapped by the fact that, through preparative causes, the x ranges for the chlorides and bromides are different (539-2023 and 100-350, respectively); nevertheless the emergence of similar quotients (e.g., ~ 0.7) for the two polymers at degrees of polymerisation related roughly as $8: 1$ may be interpreted as indicating a somewhat greater rigidity among the chain segments assembled in the macromolecules of the chloride than among those of the bromide.

Apparent Anisotropic Polarisabilities of Polyvinyl Bromides.-Table 5 summarises calculations made by assuming that the dissolved polyvinyl bromides have polarisability ellipsoids of revolution, that b_{1} is greater than $b_{2}=b_{3}$, that $\mu_{\text {resultant }}$ acts parallel to the axis b_{1}, and that ${ }_{\mathrm{F}} P=0.95 R_{\mathrm{D}}$ (the factor 0.95 is a mean value; the sum $b_{\mathrm{L}}+2 b_{\mathrm{T}}=1.967$,

[^1]
Table 4.

Empirical connections between physical properties and logarithms of the degrees of polymerisation of polyvinyl bromide preparations.

$\alpha \varepsilon_{1}=1.22-0.910 L+0.758 L^{2}$						
$\alpha \varepsilon_{1}$ (obs.)	2.519	$2 \cdot 667$	2.992	3.144	$3 \cdot 458$	3.914
$\alpha \varepsilon_{1}$ (calc.) $\ldots \ldots$.	$2 \cdot 432$	$2 \cdot 675$	$3 \cdot 060$	$3 \cdot 242$	$\mathbf{3} \cdot 485$	$3 \cdot 900$
$\beta d_{1}=0.3850+0.063 L$						
βd_{1} (obs.)..............	0.5104	0.5146	0.5110	0.5337	0.5387	0.5316
βd_{1} (calc.)	0.5110	0.5177	$0 \cdot 5281$	$0 \cdot 5321$	$0 \cdot 5379$	0.5453
$\gamma n_{1}=0.0900+0.0080 L-0.0051 L^{2}$						
γn_{1} (obs.)	0.085	0.084	0.083	0.082	0.081	0.076
γn_{1} (calc.)	0.086	0.084	0.082	0.081	0.080	0.077
$\delta B_{1}=-1.51+0.843 L$						
δB_{1} (obs.)	$0 \cdot 176$	$0 \cdot 245$	$0 \cdot 408$	0.444	0.532	$0 \cdot 642$
δB_{1} (calc.)	$0 \cdot 176$	0.265	$0 \cdot 405$	$0 \cdot 459$	0.536	$0 \cdot 636$
$\infty p_{2}=0.4200-0.221 L+0.141 L^{2}$						
∞p_{2} (obs.)	0.5557	0.5789	0.6335	$0 \cdot 6523$	0.7027	0.7797
∞p_{2} (calc.)	$0 \cdot 5440$	0.5817	$0 \cdot 6456$	0.6731	0.7144	0.7706
$\infty r_{2}=0.2200-0.0253 L$						
∞r_{2} (obs.)	$0 \cdot 1674$	$0 \cdot 1667$	$0 \cdot 1662$	$0 \cdot 1608$	0.1587	0.1581
∞r_{2} (calc.)	$0 \cdot 1700$	$0 \cdot 1667$	$0 \cdot 1625$	$0 \cdot 1609$	$0 \cdot 1586$	$0 \cdot 1556$
$\infty\left({ }_{8} K_{2}\right)=-24.00+13.05 L$						
$10^{14} \infty\left({ }_{8} K_{2}\right)$ (obs.)	2.128	3-224	5.829	6.343	$7 \cdot 663$	$9 \cdot 309$
$10^{14} \infty\left({ }_{8} K_{2}\right)$ (calc.)	$2 \cdot 110$	$3 \cdot 486$	5.644	$6 \cdot 478$	$7 \cdot 680$	$9 \cdot 207$
$\mu=1.60-17 \cdot 48 L+11.64 L^{2}$						
μ (obs.)	$14 \cdot 11$	16.41	$21 \cdot 17$	$23 \cdot 38$	27.38	33.52
μ (calc.)	$13 \cdot 20$	$16 \cdot 54$	$21 \cdot 90$	$24 \cdot 44$	$27 \cdot 85$	$32 \cdot 60$

Table 5.
Apparent semi-axes of polarisability of polyvinyl bromides.

Polymer	M_{2}	$\left(b_{1}-b_{2}\right)$	$b_{1}+2 b_{2}$	b_{1}	b_{2}
I	10,720	0.01	$202 \cdot 62$	$67 \cdot 55$	$67 \cdot 54$
II	13,660	0.02	$257 \cdot 33$	$85 \cdot 79$	$85 \cdot 77$
III	19,990	0.02	$375 \cdot 28$	$125 \cdot 11$	$125 \cdot 09$
IV	23,160	0.02	$420 \cdot 68$	$140 \cdot 24$	$140 \cdot 22$
V	28,630	0.03	$513 \cdot 42$	$171 \cdot 16$	$171 \cdot 13$
VI	37,480	0.03	$669 \cdot 20$	$223 \cdot 09$	$223 \cdot 06$

for the two $\mathrm{C}-\mathrm{C}$, three $\mathrm{C}-\mathrm{H}$, and $\mathrm{C}-\mathrm{Br}$ bonds ${ }^{16}$ in the $-\mathrm{CH}_{2}-\mathrm{CHBr}$ repeating unit, when multiplied by x, gives $\left(b_{1}+2 b_{2}\right)$, for polymers I-IV, respectively, as follow: $197 \cdot 09$, $251 \cdot 19,367 \cdot 63,425 \cdot 86,526 \cdot 57$, and $689 \cdot 24$).

A low anisotropy is thus revealed. These polymers therefore behave as would be expected if, in solution, they exist as almost random coils. Remarks in ref. 1 regarding the polyvinyl chlorides apply mutatis mutandis to the bromides; in particular, it is again the case that helical conformations can be proposed which are equivalent from polarity and polarisability viewpoints to near-random coils. By experiment these two types cannot be distinguished, nor can any notable differences in flexibility between the chlorides and bromides be convincingly detected.

The award of an H. B. and F. M. Gritton Research Scholarship to K. M. S. S. is gratefully acknowledged.

University of Sydney, Sydney, Australia.
[Received, December 27th, 1961.]
${ }^{16}$ Le Fèvre, Liversidge Lecture, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1.

[^0]: ${ }^{1}$ Le Fèvre and Sundaram, J., 1962, 1494.
 ${ }^{2}$ Stuart, Z. phys. Chem., 1935, B, 2', 350.
 ${ }^{3}$ Kharasch, McNab, and Mayo, J. Amer. Chem. Soc., 1933, 55, 2521.

[^1]: * Polarisabilities quoted throughout in units 10^{-23} c.c.
 ${ }^{12}$ Le Fèvre and Ritchie, unpublished work.
 ${ }^{13}$ "Tables of Interatomic Distances and Configuration in Molecules and Ions," ed. Sutton, Chem. Soc. Spec. Publ. No. 11, 1958.
 ${ }_{14}$ Le Fèvre and Williams, unpublished work.
 15 Debye and Bueche, J. Chem. Phys., 1951, 19, 589

